首页
关于
Search
1
微服务
34 阅读
2
同步本地Markdown至Typecho站点
29 阅读
3
JavaWeb——后端
18 阅读
4
苍穹外卖
14 阅读
5
智能协同云图库
13 阅读
后端学习
项目
杂项
科研
论文
默认分类
登录
找到
15
篇与
科研
相关的结果
2025-07-05
matlab
matlab笔记 命令行窗口 clc:清屏(命令行窗口) clear all:把命名的变量删掉,不是命令行窗口 命名规则: 变量命名以字母开头,不可以下划线,变量是区分字母大小写的 脚本 %% xxx 注释(百分号+一个空格) % xxx 也是注释 s='a' '"aaaa",字符串 abs(s) 字符s的ascii码,为97 char(97), 输出'a' numtostr(65) ans='65',数字转字符串 length(str),字符串的长度 矩阵 A=[1 2 3 ;4 5 6 ;7 8 9] 分号换行 B=A‘ ,矩阵转置 C=A(:) ,将矩阵拉成一列,按列存储,第一列拼接第二列拼接第三列 D=inv(A) 求逆矩阵 E=zeros(10,5,3) 生成10行5列3维0矩阵 元胞数组 A=cell(1,6),生成1行6列的小格子,每个小格子可以存放各种数据 eye(3),生成3x3的单位阵 A{2}=eye(3),matlab数组从1开始,不是0
科研
zy123
7月5日
0
1
0
2025-06-27
小论文
小论文 1.背景意义这边需要改。 2.卡尔曼滤波这边,Q、R不明确 / 真实若干时刻的测量值可以是真实值;但后面在线预测的时候仍然传的是真实值,事实上无法获取=》 考虑用三次指数平滑,对精确重构出来的矩阵谱分解,得到的特征值作为'真实值',代入指数平滑算法中进行在线更新,执行单步计算。 4.这块有问题,没提高秩性,没说除了ER模型外的移动模型如RWP 特征值精度预估 1. 噪声随机变量与协方差 符号 含义 $w_i$ 第 $i$ 个过程噪声样本 $v_j$ 第 $j$ 个观测噪声样本 $Q$ 过程噪声的真实方差(协方差矩阵退化) $R$ 观测噪声的真实方差(协方差矩阵退化) 说明: 在矩阵形式的 Kalman Filter 中,通常写作 $$ w_k\sim\mathcal N(0,Q),\quad v_k\sim\mathcal N(0,R). $$ 这里为做统计检验,把 $w_i, v_j$ 当作样本,$Q,R$ 就是它们在标量情况下的方差。 2. 样本统计量 符号 含义 $N_w,;N_v$ 过程噪声样本数和观测噪声样本数 $\bar w$ 过程噪声样本均值 $\bar v$ 观测噪声样本均值 $s_w^2$ 过程噪声的样本方差估计 $s_v^2$ 观测噪声的样本方差估计 定义: $$ \bar w = \frac1{N_w}\sum_{i=1}^{N_w}w_i,\quad s_w^2 = \frac1{N_w-1}\sum_{i=1}^{N_w}(w_i-\bar w)^2, $$ $$ \bar v = \frac1{N_v}\sum_{j=1}^{N_v}v_j,\quad s_v^2 = \frac1{N_v-1}\sum_{j=1}^{N_v}(v_j-\bar v)^2. $$ 3. 方差比的 $F$ 分布区间估计 构造 $F$ 统计量 $$ F = \frac{(s_w^2/Q)}{(s_v^2/R)} = \frac{s_w^2}{s_v^2},\frac{R}{Q} \sim F(N_w-1,,N_v-1). $$ 置信区间(置信度 $1-\alpha$) 查得 $$ F_{L}=F_{\alpha/2}(N_w-1,N_v-1),\quad F_{U}=F_{1-\alpha/2}(N_w-1,N_v-1), $$ 则 $$ \begin{align*} P\Big{F_{\rm L}\le F\le F_{\rm U}\Big}=1-\alpha \quad\Longrightarrow \quad P\Big{F_{\rm L},\le\frac{s_w^2}{s_v^2},\frac{R}{Q}\le F_{\rm U},\Big}=1-\alpha. \end{align*} $$ 解出 $\frac{R}{Q}$ 的区间 $$ P\Bigl{,F_{L},\frac{s_v^2}{s_w^2}\le \frac{R}{Q}\le F_{U},\frac{s_v^2}{s_w^2}\Bigr}=1-\alpha. $$ 令 $$ \theta_{\min}=\sqrt{,F_{L},\frac{s_v^2}{s_w^2},},\quad \theta_{\max}=\sqrt{,F_{U},\frac{s_v^2}{s_w^2},}. $$ 4. 卡尔曼增益与误差上界 在标量情况下(即状态和观测均为1维),卡尔曼增益公式可简化为: $$ K = \frac{P_k H^T}{HP_k H^T + R} = \frac{HP_k}{H^2 P_k + R} $$ 针对我们研究对象,特征值滤波公式的系数都属于实数域。$P_{k-1}$是由上次迭代产生,因此可以$FP_{k-1}F^T$看作定值,则$P_k$的方差等于$Q$的方差,即: $$ \text{var}(P_k) = \text{var}(Q) $$ 令 $c = H$, $m = 1/H$(满足 $cm = 1$),则: $$ K = \frac{cP_k}{c^2 P_k + R} = \frac{1}{c + m(R/P_k)} \quad R/P_k\in[\theta_{\min}^2,\theta_{\max}^2]. $$ 则极值为 $$ K_{\max}=\frac{1}{c + m\,\theta_{\min}^2},\quad K_{\min}=\frac{1}{c + m\,\theta_{\max}^2}. $$ 通过历史数据计算预测误差的均值: $$ E(x_k' - x_k) \approx \frac{1}{M} \sum_{m=1}^{M} (x_k^{l(m)} - x_k^{(m)})\\ $$ 定义误差上界 $$ \xi =\bigl(K_{\max}-K_{\min}\bigr)\;E\bigl(x_k'-x_k\bigr) =\Bigl(\tfrac1{c+m\,\theta_{\min}^2}-\tfrac1{c+m\,\theta_{\max}^2}\Bigr) \,E(x_k'-x_k). $$ 若令 $c\,m=1$,可写成 $$ \xi =\frac{(\theta_{\max}-\theta_{\min})\,E(x_k'-x_k)} {(c^2+\theta_{\min})(c^2+\theta_{\max})}. $$ 量化噪声方差估计的不确定性,进而评估卡尔曼滤波器增益的可能波动,并据此给出滤波误差的上界. 指数平滑法 指数平滑法(Single Exponential Smoothing) 指数平滑法是一种对时间序列进行平滑和短期预测的简单方法。它假设近期的数据比更久之前的数据具有更大权重,并用一个平滑常数 $\alpha$($0<\alpha\leq1$)来控制“记忆”长度。 平滑方程: $$ S_t = \alpha,x_t + (1-\alpha),S_{t-1} $$ $x_t$:时刻 $t$ 的实际值 $S_t$:时刻 $t$ 的平滑值(也可作为对 $x_{t+1}$ 的预测) $S_1$ 的初始值一般取 $x_1$ 举例: 假设一产品过去 5 期的销量为 $[100,;105,;102,;108,;110]$,取 $\alpha=0.3$,初始平滑值取 $S_1=x_1=100$: $S_2=0.3\times105+0.7\times100=101.5$ $S_3=0.3\times102+0.7\times101.5=101.65$ $S_4=0.3\times108+0.7\times101.65\approx103.755$ $S_5=0.3\times110+0.7\times103.755\approx106.379$ 因此,对第 6 期销量的预测就是 $S_5\approx106.38$。 二次指数平滑法(Holt’s Linear Method) 当序列存在趋势(Trend)时,单次平滑会落后。二次指数平滑(也称 Holt 线性方法)在单次平滑的基础上,额外对趋势项做平滑。 水平和趋势平滑方程: $$ \begin{cases} L_t = \alpha,x_t + (1-\alpha)(L_{t-1}+T_{t-1}), \[6pt] T_t = \beta,(L_t - L_{t-1}) + (1-\beta),T_{t-1}, \end{cases} $$ $L_t$:水平(level) $T_t$:趋势(trend) $\alpha, \beta$:平滑常数,通常 $0.1$–$0.3$ 预测公式: $$ \hat _{t+m} = L_t + m,T_t $$ 其中 $m$ 为预测步数。 举例: 用同样的数据 $[100,105,102,108,110]$,取 $\alpha=0.3,;\beta=0.2$,初始化: $L_1 = x_1 = 100$ $T_1 = x_2 - x_1 = 5$ 接下来计算: $t=2$: $$ L_2=0.3\times105+0.7\times(100+5)=0.3\times105+0.7\times105=105 $$ $$ T_2=0.2\times(105-100)+0.8\times5=0.2\times5+4=5 $$ $t=3$: $$ L_3=0.3\times102+0.7\times(105+5)=0.3\times102+0.7\times110=106.4 $$ $$ T_3=0.2\times(106.4-105)+0.8\times5=0.2\times1.4+4=4.28 $$ $t=4$: $$ L_4=0.3\times108+0.7\times(106.4+4.28)\approx0.3\times108+0.7\times110.68\approx110.276 $$ $$ T_4=0.2\times(110.276-106.4)+0.8\times4.28\approx0.2\times3.876+3.424\approx4.199 $$ $t=5$: $$ L_5=0.3\times110+0.7\times(110.276+4.199)\approx0.3\times110+0.7\times114.475\approx112.133 $$ $$ T_5=0.2\times(112.133-110.276)+0.8\times4.199\approx0.2\times1.857+3.359\approx3.731 $$ 预测第 6 期 ($m=1$): $$ \hat _6 = L_5 + 1\times T_5 \approx 112.133 + 3.731 = 115.864 $$ 小结 单次指数平滑适用于无明显趋势的序列,简单易用。 二次指数平滑(Holt 方法)在水平外加趋势成分,适合带线性趋势的数据,并可向未来多步预测。 通过选择合适的平滑参数 $\alpha,\beta$ 并对初值进行合理设定,即可在实践中获得较好的短期预测效果。 三次指数平滑法概述 三次指数平滑法在二次(Holt)方法的基础上又加入了对季节成分的平滑,适用于同时存在趋势(Trend)和季节性(Seasonality)的时间序列。 主要参数及符号 $m$:季节周期长度(例如季度数据 $m=4$,月度数据 $m=12$)。 $\alpha, \beta, \gamma$:水平、趋势、季节三项的平滑系数,均在 $(0,1]$ 之间。 $x_t$:时刻 $t$ 的实际值。 $L_t$:时刻 $t$ 的水平(level)平滑值。 $B_t$:时刻 $t$ 的趋势(trend)平滑值。 $S_t$:时刻 $t$ 的季节(seasonal)成分平滑值。 $\hat x_{t+h}$:时刻 $t+h$ 的 $h$ 步预测值。 平滑与预测公式(加法模型) $$ \begin{aligned} L_t &= \alpha\,(x_t - S_{t-m}) + (1-\alpha)\,(L_{t-1}+B_{t-1}),\\ B_t &= \beta\,(L_t - L_{t-1}) + (1-\beta)\,B_{t-1},\\ S_t &= \gamma\,(x_t - L_t) + (1-\gamma)\,S_{t-m},\\ \hat x_{t+h} &= L_t + h\,B_t + S_{t-m+h_m},\quad\text{其中 }h_m=((h-1)\bmod m)+1. \end{aligned} $$ 加法模型 适用于季节波动幅度与水平无关的情况; 乘法模型 则把"$x_t - S_{t-m}$"改为"$x_t / S_{t-m}$"、"$S_t$"改为"$\gamma,(x_t/L_t)+(1-\gamma),S_{t-m}$"并在预测中用乘法。 计算示例 假设我们有一个周期为 $m=4$ 的序列,前 8 期观测值: $$ x = [110,\;130,\;150,\;95,\;120,\;140,\;160,\;100]. $$ 取参数 $\alpha=0.5,\;\beta=0.3,\;\gamma=0.2$。 初始值按常见做法设定为: $L_0 = \frac{1}{m}\sum_{i=1}^m x_i = \tfrac{110+130+150+95}{4}=121.25$. 趋势初值 $$ B_0 = \frac{1}{m^2}\sum_{i=1}^m (x_{m+i}-x_i) = \frac{(120-110)+(140-130)+(160-150)+(100-95)}{4\cdot4} = \frac{35}{16} \approx 2.1875. $$ 季节初值 $S_i = x_i - L_0$,即 $[-11.25,;8.75,;28.75,;-26.25]$ 对应 $i=1,2,3,4$。 下面我们演示第 5 期($t=5$)的更新与对第 6 期的预测。 $t$ $x_t$ 计算细节 结果 已知初值 0 – $L_0=121.25,;B_0=2.1875$ 1–4 – $S_{1\ldots4}=[-11.25,,8.75,,28.75,,-26.25]$ 5 120 $L_5=0.5(120-(-11.25)) +0.5(121.25+2.1875)$ $\approx127.3438$ $B_5=0.3(127.3438-121.25)+0.7\cdot2.1875$ $\approx3.3594$ $S_5=0.2(120-127.3438)+0.8\cdot(-11.25)$ $\approx-10.4688$ 预测 $h=1$ – $\hat x_6 = L_5 + 1\cdot B_5 + S_{6-4};(=S_2=8.75)$ $\approx139.45$ 解读: 期 5 时,剔除上周期季节影响后平滑得到新的水平 $L_5$; 由水平变化量给出趋势 $B_5$; 更新第 5 期的季节因子 $S_5$; 期 6 的一步预测综合了最新水平、趋势和对应的季节因子,得 $\hat x_6\approx139.45$。 总结思考 如果你把预测值 $\hat x_{t+1}$ 当作"新观测"再去更新状态,然后再预测 $\hat x_{t+2}$,这种"预测—更新—预测"的迭代方式会让模型把自身的预测误差也当作输入,不断放大误差。 正确做法是——在时刻 $t$ 得到 $L_t,B_t,S_t$ 后,用上面的直接公式一次算出所有未来 $\hat x_{t+1},\hat x_{t+2},\dots$,这样并不会"反馈"误差,也就没有累积放大的问题。 或者,根据精确重构出来的矩阵谱分解,得到的特征值作为'真实值',进行在线更新,执行单步计算。 实时估计 为什么不用AI 能做预测 ,对于完全随机网络没有用 复杂度高 需要数据训练 算力时间 图神经 可以搞多维特征 AI对结构预测不准, 特征 为什么要等随机网络稳定?这里其实是一个假设,稳定下来:RWP 在足够长时间后满足 Birkhoff 点态遍历定理,节点的取样分布趋于稳态,并且对每个时刻都是同分布!!!然后可以应用那个结论。
科研
zy123
6月27日
0
1
0
2025-05-10
ZY网络重构分析
多智能体随机网络的全局知识对其模型收敛性影响的研究 智能体网络的现状、包括网络结构(和现有互联网、物联网的差异)、通信协议(A2A(agent)、MCP成为主流,为了智能体之间的通信)传统的协议已经慢慢被替代,不止是传统互联网应用-》大模型 多智能体随机网络与传统互联网不一样,结构基于随机网络(有什么作用,举一些具体的例子),通信协议(没有专门的协议,我们工作的出发点)、应用(联邦学习、图神经网络、强化学习) 网络模型的收敛性,怎么定义收敛性?收敛速度、收敛效率(考虑代价)、收敛的稳定性(换了个环境变化大),联邦学习、强化学习收敛性的问题,和哪些因素有关,网络全局结构对它的影响;推理阶段也有收敛性,多智能体推理结果是否一致;图神经网络推理结果是否一致。 多智能体随机网络全局知识的获取(分布式、集中式) 多智能体随机机会网络、动态谱参数估算、网络重构算法、聚类量化算法、联邦学习、图神经网络 如何确定kmeans的簇数?节点之间的流量,空间转为时间的图。 压缩感知 函数拟合 采样定理 傅里叶变换 谱分解与网络重构 实对称矩阵性质: 对于任意 $n \times n$ 的实对称矩阵 $A$: 秩可以小于 $n$(即存在零特征值,矩阵不可逆)。 但仍然有 $n$ 个线性无关的特征向量(即可对角化)。 特征值有正有负!!! 一个实对称矩阵可以通过其特征值和特征向量进行分解。对于一个 $n \times n$ 的对称矩阵 $A$, 完整谱分解可以表示为: $$ A = Q \Lambda Q^T \\ A = \sum_{i=1}^{n} \lambda_i x_i x_i^T $$ $Q$是$n \times n$的正交矩阵,每一列是一个特征向量;$\Lambda$是$n \times n$的对角矩阵,对角线元素是特征值$\lambda_i$ ,其余为0。 其中,$\lambda_i$ 是矩阵 $A$ 的第 $i$ 个特征值,$x_i$ 是对应的特征向量。(注意!这里的特征向量需要归一化!!!) 如果矩阵 $A$ 的秩为 $r$ ,那么谱分解里恰好有 $r$ 个非零特征值。 用这 $r$ 对特征值/特征向量就能精确重构出 $A$,因为零特征值对矩阵重构不提供任何贡献。 因此,需要先对所有特征值取绝对值,从大到小排序,取前 $r$ 个!!! 截断的谱分解(取前 $\kappa$ 个特征值和特征向量) 如果我们只保留前 $\kappa$ 个绝对值最大的特征值和对应的特征向量,那么: 特征向量矩阵 $U_\kappa$:取 $U$ 的前 $\kappa$ 列,维度为 $n \times \kappa$。 特征值矩阵 $\Lambda_\kappa$:取 $\Lambda$ 的前 $\kappa \times \kappa$ 子矩阵(即前 $\kappa$ 个对角线元素),维度为 $\kappa \times \kappa$。 因此,截断后的近似分解为: $$ A \approx U_\kappa \Lambda_\kappa U_\kappa^T\\ A \approx \sum_{i=1}^{\kappa} \lambda_i x_i x_i^T $$ 推导过程 特征值和特征向量的定义 对于一个对称矩阵 $A$,其特征值和特征向量满足: $$ A x_i = \lambda_i x_i $$ 其中,$\lambda_i$ 是特征值,$x_i$ 是对应的特征向量。 谱分解 将这些特征向量组成一个正交矩阵 $Q$ $A = Q \Lambda Q^T$ $$ Q = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}, $$ $$ Q \Lambda = \begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \end{bmatrix}. $$ $$ Q \Lambda Q^T = \begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \end{bmatrix} \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix}. $$ $$ Q \Lambda Q^T = \lambda_1 x_1 x_1^T + \lambda_2 x_2 x_2^T + \cdots + \lambda_n x_n x_n^T. $$ 可以写为 $$ A = \sum_{i=1}^{n} \lambda_i x_i x_i^T. $$ 网络重构 在随机网络中,网络的邻接矩阵 $A$ 通常是对称的。利用预测算法得到的谱参数 ${\lambda_i, x_i}$ 后,就可以用以下公式重构网络矩阵: $$ A(G) = \sum_{i=1}^{n} \lambda_i x_i x_i^T $$ 性质 特征分解/谱分解 奇异值分解(SVD) 适用矩阵 仅限方阵($n \times n$) 任意矩阵($m \times n$,包括矩形矩阵) 分解形式 $A = P \Lambda P^{-1}$ $A = U \Sigma V^*$ 矩阵类型 可对角化矩阵(如对称、正规矩阵) 所有矩阵(包括不可对角化的方阵和非方阵) 输出性质 特征值($\lambda_i$)可能是复数 奇异值($\sigma_i$)始终为非负实数 正交性 仅当 $A$ 正规时 $P$ 是酉矩阵 $U$ 和 $V$ 始终是酉矩阵(正交) 谱分解的对象为实对称矩阵 奇异值分解 步骤 步骤 1:验证矩阵对称性 确保 $A$ 是实对称矩阵(即 $A = A^\top$),此时SVD可通过特征分解直接构造。 步骤 2:计算特征分解 对 $A$ 进行特征分解: $$ A = Q \Lambda Q^\top $$ 其中: $Q$ 是正交矩阵($Q^\top Q = I$),列向量为 $A$ 的特征向量。 $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$,$\lambda_i$ 为 $A$ 的特征值(可能有正、负或零)。 步骤 3:构造奇异值矩阵 $\Sigma$ 奇异值:取特征值的绝对值 $\sigma_i = |\lambda_i|$,得到对角矩阵: $$ \Sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_n) $$ 排列顺序:通常按 $\sigma_i$ 降序排列(可选,但推荐)。 步骤 4:处理符号(负特征值) 符号矩阵 $S$:定义对角矩阵 $S = \text{diag}(s_1, s_2, \dots, s_n)$,其中: $$ s_i = \begin{cases} 1 & \text{if } \lambda_i \geq 0, \ -1 & \text{if } \lambda_i < 0. \end{cases} $$ 左奇异向量矩阵 $U$:调整特征向量的方向: $$ U = Q S $$ 即 $U$ 的列为 $Q$ 的列乘以对应特征值的符号。 步骤 5:确定右奇异向量矩阵 $V$ 由于 $A$ 对称,右奇异向量矩阵 $V$ 直接取特征向量矩阵: $$ V = Q $$ 步骤 6:组合得到SVD 最终SVD形式为: $$ A = U \Sigma V^\top $$ 验证: $$ U \Sigma V^\top = (Q S) \Sigma Q^\top = Q (S \Sigma) Q^\top = Q \Lambda Q^\top = A $$ (因为 $S \Sigma = \Lambda$,例如 $\text{diag}(-1) \cdot \text{diag}(2) = \text{diag}(-2)$)。 例子(含正、负、零特征值) 设对称矩阵 $$ A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} $$ 特征分解 特征值: $$ \lambda_1 = \sqrt{2}, \quad \lambda_2 = -\sqrt{2}, \quad \lambda_3 = 0 $$ 特征向量矩阵和特征值矩阵: $$ Q = \begin{bmatrix} \frac{1 + \sqrt{2}}{2} & \frac{1 - \sqrt{2}}{2} & 0 \ 0 & 0 & 1 \ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} \sqrt{2} & 0 & 0 \ 0 & -\sqrt{2} & 0 \ 0 & 0 & 0 \end{bmatrix} $$ 构造SVD 步骤: 按 $|\lambda_i|$ 降序排列:$\sigma_1 = \sqrt{2}, \sigma_2 = \sqrt{2}, \sigma_3 = 0$(取绝对值后排序)。 奇异值矩阵: $$\Sigma = \mathrm{diag}\bigl(\sqrt{2},,\sqrt{2},,0\bigr).$$ 符号调整矩阵: $$ S = \mathrm{diag}\bigl(\operatorname{sign}(\lambda_1),,\operatorname{sign}(\lambda_2),,\operatorname{sign}(\lambda_3)\bigr) = \mathrm{diag}(+1,,-1,,+1), $$ 左奇异向量矩阵: $$ U = Q,S = \begin{bmatrix} \frac{1+\sqrt{2}}{2}\cdot1 & \frac{1-\sqrt{2}}{2}\cdot(-1) & 0\cdot1 \ 0\cdot1 & 0\cdot(-1) & 1\cdot1 \ \tfrac12\cdot1 & \tfrac12\cdot(-1) & 0\cdot1 \end{bmatrix} = \begin{bmatrix} \dfrac{1+\sqrt{2}}{2} & \dfrac{\sqrt{2}-1}{2} & 0 \ 0 & 0 & 1 \ \tfrac12 & -\tfrac12 & 0 \end{bmatrix}. $$ 右奇异向量矩阵: $$ V = Q. $$ 验证 $$ A = U,\Sigma,V^\top $$ 网络重构分析 基于扰动理论的特征向量估算方法 设原矩阵为 $A$,扰动后矩阵为 $A+\zeta C$(扰动矩阵 $\zeta C$,$\zeta$是小参数),令其第 $i$ 个特征值、特征向量分别为 $\lambda_i,x_i$ 和 $\tilde\lambda_i,\tilde x_i$。 特征向量的一阶扰动公式: $$ \Delta x_i =\tilde x_i - x_i \;\approx\; \zeta \sum_{k\neq i} \frac{x_k^T\,C\,x_i}{\lambda_i - \lambda_k}\;x_k, $$ 输出:对应第 $i$ 个特征向量修正量 $\Delta x_i$。 特征值的一阶扰动公式: $$ \Delta\lambda_i = \tilde\lambda_i - \lambda_i \;\approx\;\zeta\,x_i^T\,C\,x_i $$ **关键假设:**当扰动较小( $\zeta\ll1$) 且各模态近似正交均匀时,常作进一步近似 $$ x_k^T\,C\,x_i \;\approx\; x_i^T\,C\,x_i \; $$ 正交: $\{x_k\}$ 本身是正交基,这是任何对称矩阵特征向量天然具有的属性。 均匀:我们把 $C$ 看作“不偏向任何特定模态”的随机小扰动——换句话说,投影到任何两个方向 $(x_i,x_k)$ 上的耦合强度 $x_k^T,C,x_i\quad\text{和}\quad x_i^T,C,x_i$ 在数值量级上应当差不多,因此可以互相近似。 因此,将所有的 $x_k^T C x_i$ 替换为 $x_i^T C x_i$: $$ \Delta x_i \approx \zeta \sum_{k\neq i} \frac{x_i^T C x_i}{\lambda_i - \lambda_k} x_k = \zeta (x_i^T C x_i) \sum_{k\neq i} \frac{1}{\lambda_i - \lambda_k} x_k = \sum_{k\neq i} \frac{\Delta \lambda_i}{\lambda_i - \lambda_k} x_k \tag{*} $$ $$ \Delta x_i \approx\sum_{k\neq i} \frac{\Delta \lambda_i}{\lambda_i - \lambda_k} x_k \tag{*} $$ 问题: 当前时刻的邻接矩阵 $$ A^{(1)}\in\mathbb R^{n\times n},\qquad A^{(1)},x_i^{(1)}=\lambda_i^{(1)},x_i^{(1)},\quad |x_i^{(1)}|=1. $$ 下一时刻的邻接矩阵 $$ A^{(2)}\in\mathbb R^{n\times n}, $$ 已知它的第 $i$ 个特征值 $\lambda_i^{(2)}$(卡尔曼滤波得来). 求当前时刻的特征向量 $x_i^{(2)}$。 下一时刻第 $i$ 个特征向量的预测为 $$ \boxed{ x_i^{(2)} \;=\; x_i^{(1)}+\Delta x_i \;\approx\; x_i^{(1)} +\sum_{k\neq i} \frac{\lambda_i^{(2)}-\lambda_i^{(1)}} {\lambda_i^{(1)}-\lambda_k^{(1)}}\; x_k^{(1)}. } $$ 通过该估算方法可以依次求出下一时刻的所有特征向量。 矩阵符号说明 原始(真实)邻接矩阵 $A$ ,假设 $A$ 的秩为 $r$: $\lambda_{r+1}=\cdots=\lambda_n=0$ $$ A = \sum_{m=1}^n \lambda_m,x_m x_m^T=\begin{align*} \sum_{m=1}^r \lambda_m x_m x_m^T + \sum_{m=r+1}^n \lambda_m x_m x_m^T = \sum_{m=1}^r \lambda_m x_m x_m^T \end{align*}, $$ 滤波估计得到的矩阵及谱分解: $$ \widetilde A = \sum_{m=1}^r \widetilde\lambda_m,\widetilde x_m\widetilde x_m^T, \quad \widetilde\lambda_1\ge\cdots\ge\widetilde\lambda_n; $$ 只取前 $\kappa$ 项重构 : $$ A_\kappa ;=;\sum_{m=1}^\kappa \widetilde\lambda_m,\widetilde x_m\widetilde x_m^T, $$ 对 $A_\kappa$ 进行K-means聚类,得到 $A_{final}$ 目标是让 $A_{final}$ = $A$ 0/1矩阵 其中 $\widetilde{\lambda}_i$ 和 $\widetilde _i$ 分别为通过预测得到矩阵 $\widetilde A$ 的第 $i$ 个特征值和对应特征向量。 然而预测值和真实值之间存在误差,直接进行矩阵重构会使得重构误差较大。 对于这个问题,文献提出一种 0/1 矩阵近似恢复算法。 $$ a_{ij} = \begin{cases} 1, & \text{if}\ \lvert a_{ij} - 1 \rvert < 0.5 \\ 0, & \text{else} \end{cases} $$ 只要我们的估计值与真实值之间差距**小于 0.5**,就能保证阈值处理以后准确地恢复原边信息。 文中提出网络特征值扰动与邻接矩阵扰动具有相同的规律 真实矩阵 $A$ 与预测矩阵 $\widetilde{A} $ 之间的差为 (秩为 $r$) $$ A - \widetilde{A}=\sum_{m=1}^r \lambda_m\,x_m x_m^T-\sum_{m=1}^r \widetilde\lambda_m\,\widetilde x_m\widetilde x_m^T $$ **若假设特征向量扰动可忽略,即$\widetilde x_m\approx x_m$ ,扰动可简化为(这里可能有问题,特征向量的扰动也要计算)** $$ A - \widetilde{A} = \sum_{m=1}^r \Delta \lambda_m _m _m^T. $$ 对于任意元素 $(i, j)$ 上有 $$ |a_{ij} - \widetilde{a}_{ij}|=\left| \sum_{m=1}^r \Delta \lambda_m ( _m _m^T)_{ij} \right| < \frac{1}{2} $$ 于一个归一化的特征向量 $ _m$,非对角线上元素,其外积矩阵$ _m _m^T$ 满足 $$ |( _m _m^T)_{ij}| \leq \frac12. $$ 例: $$ x_m = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}\\ x_m x_m^T = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} $$ 每个元素的绝对值$\frac12$ $$ \left| \sum_{m=1}^r \Delta \lambda_m (x_m x_m^T)_{ij} \right| \leq \sum_{m=1}^r |\Delta \lambda_m| \cdot |(x_m x_m^T)_{ij}| \leq \frac12\sum_{m=1}^r |\Delta \lambda_m|. $$ 为了确保 $|a_{ij} - \widetilde{a}_{ij}| < \frac{1}{2}$ 对所有 $(i,j)$ 成立,网络精准重构条件为: $$ \sum_{m=1}^r\left| \Delta \lambda_m\right| < 1 $$ 考虑特征向量的扰动: 1 将差分拆成"特征值项 + 特征向量项" 对称矩阵 $A,;\tilde A$ 的前 $r$ 个特征对分别记作 ${(\lambda_m,x_m)}{m=1}^r,; {(\tilde\lambda_m,\tilde x_m)}{m=1}^r$。 $$ \begin{aligned} A-\tilde A &=\sum_{m=1}^r\bigl(\lambda_m x_mx_m^\top-\tilde\lambda_m\tilde x_m\tilde x_m^\top\bigr)\\ &=\underbrace{\sum_{m=1}^r\Delta\lambda_m\,x_mx_m^\top}_{\text{特征值扰动}} \;+\; \underbrace{\sum_{m=1}^r \tilde\lambda_m\bigl(x_mx_m^\top-\tilde x_m\tilde x_m^\top\bigr)}_{\text{特征向量扰动}} . \end{aligned} $$ 2 如何控制"特征向量扰动项" 设 $\theta_m:=\angle(x_m,\tilde x_m)$, 则 rank-1 投影差满足 $$ \|x_mx_m^\top-\tilde x_m\tilde x_m^\top\|_2=\sin\theta_m, $$ 而单个元素绝对值永远不超过谱范数, 所以 $$ \bigl| (x_mx_m^\top-\tilde x_m\tilde x_m^\top)_{ij}\bigr| \;\le\;\sin\theta_m . $$ 要把 $\sin\theta_m$ 换成 只含特征值的量,用 Davis-Kahan sin θ 定理。 设 $$ \gamma_m:=\min_{k\neq m}\lvert\lambda_m-\lambda_k\rvert \quad(\text{与其它特征值的最小间隔}), $$ 当$\|\tilde A-A\|_2$ 足够小(或直接用 Weyl 定理把它替换成 $|\Delta\lambda_m|$)时 $$ \sin\theta_m \;\le\; \frac{\lvert\Delta\lambda_m\rvert}{\gamma_m} \quad\text{(单向版本的 Davis-Kahan)}\; $$ 3 元素级误差的统一上界 把两部分误差放在一起,对 非对角元 ($|x_{mi}x_{mj}|\le\tfrac12$ 的情形) 有 $$ \begin{aligned} \lvert a_{ij}-\tilde a_{ij}\rvert &\le \frac12\sum_{m=1}^r\lvert\Delta\lambda_m\rvert \;+\; \sum_{m=1}^r \lvert\tilde\lambda_m\rvert\, \sin\theta_m\\[4pt] &\le \frac12\sum_{m=1}^r\lvert\Delta\lambda_m\rvert \;+\; \sum_{m=1}^r \lvert\tilde\lambda_m\rvert\, \frac{\lvert\Delta\lambda_m\rvert}{\gamma_m}. \end{aligned} $$ 4 纯"特征值—谱隙"条件 若要保证 所有 非对角元素都 < $\tfrac12$,只需让 $$ \boxed{\; \sum_{m=1}^r \lvert\Delta\lambda_m\rvert \Bigl( \tfrac12+\frac{\lvert\tilde\lambda_m\rvert}{\gamma_m} \Bigr) \;
科研
zy123
5月10日
0
9
0
2025-04-26
Mesa仿真
Mesa仿真 配置环境 requirements.txt mesa[rec] # 包含 networkx、matplotlib、ipywidgets、solara 等推荐依赖 jupyterlab numpy pandas Conda 命令行 # 1) 添加 conda-forge 通道并设为最高优先级 conda config --add channels conda-forge conda config --set channel_priority strict # 2) 创建并激活新环境(这里以 python 3.11 为例) conda create -n mesa-env python=3.11 -y conda activate mesa-env # 3a) 通过 pip 安装(使用上面的 requirements.txt) pip install -r requirements.txt # 或者 3b) 纯 Conda 安装等价包(推荐所有包都从 conda-forge) conda install \ mesa=3.1.5 networkx matplotlib ipywidgets solara \ numpy pandas jupyterlab \ -c conda-forge
科研
zy123
4月26日
0
4
0
2025-04-26
zy
流量单位时间内的流量 若有中心服务器,可以保存全局0/1邻接矩阵A+带权邻接矩阵+特征矩阵H,周围节点通信一次即可获取全局信息 无中心服务器,每个节点可以获取0/1邻接矩阵A+带权邻接矩阵 关键假设:假设历史真实数据已知 可以拟合 二次函数 当作当前的测量值 因为我们要做实时估计 可能来不及获取实时值 但可以拟合过去的 或者直接谱分解上一个时刻重构的矩阵,得到特征值和特征向量序列 加上随机扰动作为观测输入 证明特征值稳定性: 网络平均度+高飞证明+gpt+实验。 特征值误差分析(方差)直接看李振河的,滤波误差看郭款
科研
zy123
4月26日
0
3
0
1
2
3
下一页